Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications

نویسندگان

  • Zhifeng Wang
  • Jiangyun Liu
  • Chunling Qin
  • Hui Yu
  • Xingchuan Xia
  • Chaoyang Wang
  • Yanshan Zhang
  • Qingfeng Hu
  • Weimin Zhao
چکیده

Dealloying, a famous ancient etching technique, was used to produce nanoporous metals decades ago. With the development of dealloying techniques and theories, various interesting dealloying products including nanoporous metals/alloys, metal oxides and composites, which exhibit excellent catalytic, optical and sensing performance, have been developed in recent years. As a result, the research on dealloying products is of great importance for developing new materials with superior physical and chemical properties. In this paper, typical dealloying products from Cu-based metallic glasses after dealloying in hydrofluoric acid and hydrochloric acid solutions are summarized. Several potential application fields of these dealloying products are discussed. A promising application of nanoporous Cu (NPC) and NPC-contained composites related to the energy storage field is introduced. It is expected that more promising dealloying products could be developed for practical energy storage applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dealloying and Stress Corrosion Craking of Copper Alloys in Cu(I) Solutions

Natural cases of dealloying or stress-corrosion cracking in copper alloys normally occur in oxygenated solutions, where the cathodic reactant is O2 or Cu2+. Within cavities or under deposits, the local environment is enriched in cuprous ions (e.g. CuCl2-, Cu (NH3)2+) and the potential is close to the Cu/Cu+ equilibrium. Such conditions can be simulated macroscopically by stirring powdered Cu2O ...

متن کامل

Controlling the Mechanical Properties of Bulk Metallic Glasses by Superficial Dealloyed Layer

Cu50Zr45Al₅ bulk metallic glass (BMG) presents high fracture strength. For improving its plasticity and controlling its mechanical properties, superficial dealloying of the BMG was performed. A composite structure containing an inner rod-shaped Cu-Zr-Al amorphous core with high strength and an outer dealloyed nanoporous layer with high energy absorption capacity was obtained. The microstructure...

متن کامل

Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs). In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu-Hf-Ti-(Mo, Nb, Ta, Ni) and Cu-Zr-Ag-Al-(Nb) bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoe...

متن کامل

Ti-based Bulk Metallic Glasses for Biomedical Applications

Biomedical materials can improve the life quality of a number of people each year. The range of applications includes such as joint and limb replacements, artificial arteries and skin, contact lenses, and dentures. So far the accepted biomaterials include metals, ceramics and polymers. The metallic biomaterials mainly contain stainless steel, Co-Cr alloys, Titanium and Ti-6Al-4V. Recently, bulk...

متن کامل

Screening Potential Biomaterials of Ti- and Zr-Based Metallic Glasses Rapidly

Corrosion phenomenon is the important factor in the field of biomaterial applications. The corrosion resistance of the metallic glasses was investigated by the cyclic voltammetry and a low-voltage potential state test of the cell membrane potential simulation in the simulation body fluid Hank’s solution in this paper. The potential Tiand Zr-based metallic glasses were screened rapidly to test t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015